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Abstract

1 Introduction

We examine collective decision making in large groups. In some situations,

decision rules take the form of a majority or supermajority rule in which

each member has a vote (i.e. one class voting, unicameral legislature). In

some other situations, members are grouped into classes and the proposal

put to a vote passes if it is not vetoed by a majority of members within

a particular class (i.e. two or several class voting, multicameral legislative

process).

The purpose of this paper is to compare the welfare and distributional

properties of various decision rules such as the ones just described. We

analyze settings where groups are composed of subgroups with conflicting

interests, and where preferences within each subgroup are heterogenous: one

objective of the paper will also be to understand whether and when subgroup

heterogeneity is an asset for that subgroup.
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We make these comparisons using a collective search model where pro-

posals are drawn randomly in any period, and where a proposal is adopted

if it gets the required support.

We show that whatever the majority requirement considered, one-class

voting typically generates inefficiencies, while an appropriate multicameral

design can restore efficiency. With one-class voting, inefficiencies either take

the form of delay in reaching agreements (this occur when the majority re-

quirement is set high enough so as to prevent a minority group from being

hurt), or inefficiencies take the form of reaching ex post inefficient agree-

ments that hurt a minority (a form of “tyranny of the majority”), with the

consequence that all sub-groups, for fear of being in the losing minority, end

up accepting inefficient proposals.

There is however one instance in which one-class voting generates only

little inefficiencies. This occurs when there are two sub-groups of similar size,

and when transfer mechanisms within each subgroup ensure that benefits

are spread across many subgroup members.

Concerning distribution, we find that with one-class voting (and two sub-

groups), whether homogenous preferences is an asset for a subgroup depends

on the strength of the majority requirement.

When the majority requirement is not too large, the subgroup with more

homogenous preferences obtains a larger share of the surplus, because pro-

posals that favor it pass more easily: it is sufficient a small fraction of ”dis-

sidents” from the other group happen to like the proposal, and this event is

not rare when the other group has heterogenous preferences.

When the majority requirement is large, the opposite is true. The sub-

group with more heterogenous preferences obtains a larger share of the sur-

plus because proposals that pass have to please a substantial fraction of that

group, including those members that may have preferences opposite to those

of the other group.

Finally, with multi-class voting, we find that sub-group heterogeneity is
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always an asset: though it increases overall delays in reaching agreement,

the more heterogenous groups gets a larger share of the surplus, because

obtaining the assent of such a subgroup is more difficult, so proposals that

on average favor such a subgroup pass more easily.

One corollary of these results is that when there are two groups of sim-

ilar size, one-class voting (with a not too large majority requirement) fos-

ter transfer mechanisms that reduce conflicts of interests within subgroups.

Such incentives do not exit in other circumstances (multi-class voting or

large majority requirement).

2 Basic Model

We consider a group consisting of n members, labeled i = 1, ..., n. At any

date t = 1, ..., if a decision has not been made yet, a new proposal is drawn

and examined. A proposal is denoted u, where u = (ui)i∈{1,...,n} is a vector

in Rn that describes the utility ui that member i gets if the proposal u is

adopted. The set of possible proposals is denoted U , and it is assumed to

be a compact convex subset of [u, u]n. We also assume that proposals at the

various dates t = 1, .. are drawn independently from the same distribution

with continuous density f(·) ∈ ∆(U). We shall be more specific about that
distribution over proposals at the end of this Section.

Upon arrival of a new proposal u, each member decides whether to ac-

cept that proposal. The game stops whenever the current proposal receives

sufficiently strong support. We call the rule that specifies whether support

is strong enough a decision rule. We distinguish various types of decision

rules. First we consider rules where each member has a vote and where

support is characterized by a simple majority or supermajority rule. These

rules will be referred to as one-class voting rules. Second, we consider rules

where each subgroup constitute a class, and where a proposal is accepted

if there is not a majority within a class that rejects it. These rules will be
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referred to as multiple-class voting rules.

But more general rules may also be considered, whereby acceptance of a

proposal may depend on (i) the total number of members that accept it (ii)

the number of members in each subgroup that accept it (iii) the number of

subgroups that accept it.

In its form general form, a decision rule is formalized as follows. A vote

or decision to support for member i is denoted zi = 0, 1 where zi = 1 stands

for support and zi = 0 for no support, and a decision rule is a mapping ρ(.)

from the vector of individual votes z = (zi)i to {0, 1}, where ρ(z) = 1 stands
for support.

We normalize to 0 the payoff that parties obtain under perpetual dis-

agreement, and we let δ denote the common discount factor of the committee

members. That is, if the proposal u is accepted at date t, the date 0 payoff

of member i is δtui.

Strategies and equilibrium. In principle, a strategy specifies an accep-

tance rule that may at each date be any function of the history of the game.

We will however restrict our attention to stationary equilibria of this game,

where each member adopts the same acceptance rule at all dates.1

Given any stationary acceptance rule σ−i followed by members j, j 6= i,

we may define the expected payoff v̄i(σ−i) that member i derives given σ−i

from following his (best) strategy. An optimal acceptance rule for member

i is thus to accept the proposal u if and only if

ui ≥ δv̄i(σ−i),

which is stationary as well (this defines the best-response of member i to

σ−i).

1To avoid coordination problems that are common in voting (for example, all players

always voting ”no”), we will also restrict attention to equilibria that employ no weakly

dominated strategies (in the stage game). These coordination problems could alternatively

be avoided by assuming that votes are sequential.
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Stationary equilibrium acceptance rules are thus characterized by a vec-

tor v = (v1, .., vn) such that member i votes in favor of u if ui ≥ δvi and

votes against it otherwise. For any decision rule ρ(.) and value vector v, it

will be convenient to refer to Av,ρ as the corresponding acceptance set, that

is, the set of proposals that get support given that each i supports u if and

only if ui ≥ δvi:

Av,ρ = {u ∈ U, for zi = 1ui≥δvi and z = (zi)i, ρ(z) = 1}. (1)

Equilibrium consistency then requires that

vi = Pr(u ∈ Av,ρ)E[ui | u ∈ Av,ρ] + [1− Pr(u ∈ Av,ρ)] δvi (2)

or equivalently

vi =
Pr(u ∈ Av,ρ)

1− δ + δPr(u ∈ Av,ρ)
E[ui | u ∈ Av,ρ]. (3)

A stationary equilibrium is characterized by a vector v and an acceptance

set Av,ρ that satisfy (1)-(2). It always exists, as shown in Compte and Jehiel

(2004-09).

Preferences within and across subgroups.

We now specialize our general framework. We assume that there are K

subgroups in the population, labelled k = 1, ...,K. Proposals affect sub-

groups differently, and there is also some heterogeneity in each subgroup.

Formally, a proposal is characterized by a vector x ∈ (x1, ..., xK) ∈ X,

where X is a compact convex subset of RK , and proposals are drawn from X

according to some density g. The utility that some individual i in subgroup

k derives is

u
(k)
i = xk + εki

where εki is assumed to be a random variable independent of x. We shall

denote by Fk its cumulative density. We shall assume that Fk has a density
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fk that is single peaked. Without loss of generality we also assume that

Eεki = 0. We shall also denote by η̄ an upperbound on the support of | εki |,
make the minimal assumption that X contains the vector (η̄, ..., η̄).

For each subgroup, two features of interest will be subgroup homogeneity

(which depends on how concentrated the density fk is) and skewdness, which

we summarize by the scalar

γk = 1− Fk(0),

that is, the fraction of individuals in subgroup k that get an above aver-

age payoff — as compared to own subgroup). This parameter γk can be

interpreted as an a priori degree of popularity of proposals, within group k,

and it will thus affect the easiness with which group k will vote in favor of

proposals close to the marginal ones.

Transfer mechanisms within subgroups will not be modelled. However,

our view is that in the absence of transfer mechanisms within the subgroup,

γk typically takes low values (below 1/2), and transfer mechanisms with sub-

group k has the effect of increasing γk. Some of our result will be interpreted

with this view in mind.

Finally, we denote by αk the fraction of individuals that belong to sub-

group k. Throughout out the paper we shall be interested in the set of

equilibrium values that obtains in limit case where the group size n is ar-

bitrarily large. We shall refer to such values as limit equilibrium values.

Though our analysis can be done for impatient players, our focus will be on

cases where players are patient (δ close to 1).

3 One-class voting: inefficiency results

Two types of inefficiencies may arise. Inefficiencies due to delays in reach-

ing agreement. Inefficiencies resulting from agreement on a Pareto inferior

outcome. In this section, we focus on one class voting rule and derive con-
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ditions under which inefficiencies arise, whatever the majority requirement

considered.

Formally, we denote by β the fraction of individuals that is required for

a proposal to be accepted. We refer to this rule as a β−majority rule. We
provide a simple condition under which there exist no β−majority rules that
generates efficient decision making.

Proposition 1: Assume that max 1−αk > max γk. Then, there
exists δ̄ such that for all δ > δ̄, and for any β−majority rule,
limit equilibrium values remain bounded away from the Pareto

frontier of X.

In case groups are of comparable size, inefficiencies thus arise when

max γk < 1− 1/K. With more than two groups, the condition is thus easily
satisfied. With two groups of equal size, inefficiencies arise when proposals

have low ”a priori” popularity, that is, given our earlier interpretation, when

there are little transfer mechanisms within subgroups.

Proof: Consider n large and denote by vk the expected equilibrium

value for an individual in group k. Consider now any draw x = (xk)k∈K .

The individuals in group k that accept x are those for which

xk + εi ≥ δvk.

For a large n, there is thus a fraction approximately equal to 1−Fk(δvk−xk)
that accept it. The set of proposals that pass, which we denote by A, is thus:

A = {(xk)k,
X
k

αk(1− Fk(δvk − xk)) > β}

For almost efficient decision making, the set A should be ν−close to the
equilibrium vector v, for some ν close to 0. This thus requires that, for δ

close enough to 1 X
k

αk(1− Fk(ν)) > β.
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For ν close to 0, the left hand side is close to
P

k αkγ
k, hence since max γk <

max1− αk, we obtain that almost efficient decision making requires that

β < max 1− αk.

But this implies that a proposal passes when all subgroups but one unani-

mously agree to it. So for any candidate v = (vk)k, the set A contains all

x = (xk)k such that xk > vk + η̄ for all k but one. Such draws always exist

(because X is a convex subset of RK with a non-empty interior) and include

draws that are far away from the efficient frontier. Q.E.D.

Intuitively, there may be two forms of inefficiencies. The first form typ-

ically arises when the majority requirement is small: then each individual

has a low acceptance threshold because there is a high chance that he will

not be part of the majority that accepts, and as a result, the agreement set

is large and include Pareto inferior outcomes. The second form arises when

the majority requirement is too large: then each individual sees little risk

that the outcome will hurt him, and he prefers to patiently wait for a nice

draw, and as a result, inefficient delays arise.

The logic of the argument in the proof of the Proposition is that for

a majority rule β < max 1 − αk, it is sufficient that all subgroups but one

unanimously agrees to a proposal to pass it. As a consequence, whatever the

candidate equilibrium values v, the agreement set must be large, and the first

type of inefficiencies applies. Now for majority rules β > max γk, draws x

close to the candidate equilibrium values v cannot pass because they do not

get enough support: only draws that are strictly Pareto superior to v may

pass, which requires that v is bounded away from the frontier (inefficient

delays must arise in that case).

Under the assumptions of the proposition, max γk < max1 − αk, so

inefficiencies must arise whatever the majority rule.
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4 Multiple-class voting: an efficiency result

In this Section, we show that efficiency may be restored when one considers

multiple-class voting. Specifically, we examine rules where support by sub-

group k obtains when a fraction βk of its members supports it, and where

a proposal is adopted when all subgroups support it. So these rules re-

quire sufficient support within each subgroup (characterized by the vector

(β1, ..., βK)), and unanimity across subgroups.
2

We show below that there always exist a vector (β1, ..., βK) that induces

approximate efficiency.

Proposition 2: For any ξ > 0, there exists η > 0 such that

the multiple-class voting rule characterized by (β1, ..., βK) where

βk = 1− Fk(η) generates ξ−efficient decisions when individuals
are patient enough.

Proof: Consider n large and denote by vk the expected equilibrium

value for an individual in group k. Consider now any draw x = (xk)k. The

individuals in group k that accept x are those for which

xk + εi ≥ δvk.

For a large n, there is thus a fraction approximately equal to 1−Fk(δvk−xk)
that accept it. Subgroup k supports proposal x with probability arbitrarily

close to 1 (as n gets large) when 1 − Fk(δvk − xk) > βk = 1 − Fk(η) or

equivalently when xk > δvk − η, and arbitrarily close to 0 (as n gets large)

when xk < δvk − η. The set of proposals that pass, which we denote by Av,

is thus:

Av = {x = (x1, ..., xK) ∈ X, xk > δvk − η, for all k}
2Alternatively, under rule (β1, ..., βK), a proposal may be vetoed by subgroup k if and

only if there is a fraction 1− βk that of its members that opposes the proposal.
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Note now for any candidate equilibrium vector v ∈ X, PrAv is bounded

away from 0, so when players are patient enough, vk should be close to

E[xk | x ∈ Av].

Now assume by contradiction that v were away from the frontier by more

than ξ = η1/2, then we would have E[xk | x ∈ Av] > vk + O(ξ − η), so for

η small enough, vk could not be close to E[xk | x ∈ Av]. Contradiction.

Q.E.D.

5 The effect of size and heterogeneity

5.1 One-class voting

We examine below how the size of a subgroup as well as its homogeneity

affect its strength, under one-class voting. Our main finding is that size

matters and helps, and that homogeneity is an asset only if the majority

requirement is not too strong.

We consider the case of two subgroups and focus on the case where

the distributions εi are centered and where a single subgroup cannot on its

own enforce a proposal. We will further assume that X is symmetric so

that differences in expected payoffs only stem from asymmetries in size or

differences in the distributions Fk.

Formally, we assume:

A1: fk is centered on 0 for each k, and β > maxαk. Besides X

is symmetric, with a Pareto frontier parameterized by g(x) ≡ 0.

As explained earlier, the assumption β > maxαk(≥ 1/2) implies that

inefficient delays must occur in equilibrium, with the set of accepted pro-

posals thus concentrated around some x∗ on the Pareto Frontier of X, and

with v∗ = λ∗x∗ for some λ∗. Our first objective is to characterize x∗, v∗

and λ∗. We will next make comparative statics as a function of size and

heterogeneity.
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5.1.1 Characterization.

For any λ, define

A(λ, x∗) = {(x1, x2),
X
k

αk(1− F ((λx∗k − xk)) ≥ β}

Assuming that the proposals accepted in equilibrium are concentrated around

x∗, and assuming that λ∗ = λ, the set A(λ, x∗) characterizes the set of pro-

posals that passes given the majority requirement. Consistency thus requires

that

A(λ, x∗) ∩X = {x∗} (4)

Accordingly, in what follows, we define λ∗ as the highest value of λ such

that B(λ)∩X 6= ∅, and denote by x∗ = (x∗1, x∗2) that point of intersection.3

We have the following Proposition.

Proposition 3: Limit equilibrium values satisfy v∗ = λ∗x∗

where x∗ and λ∗ are set so (4) holds.

Since at the solution x∗, the sets A(λ∗, x∗) and X must have the same

tangent, an immediate corollary of Proposition 3 is the following proposition:

Proposition 4: We consider very patient players. Limit equi-

librium values satisfy v∗ = λ∗x∗ where the solution (x∗, λ∗) is

characterized by the equations:

g(x∗) = 0 (5)X
k

αk(1− Fk((λ
∗ − 1)x∗k)) = β (6)

g01(x
∗)

g02(x
∗)

=
α1f1((λ

∗ − 1)x∗1)
α2f2((λ∗ − 1)x∗2)

(7)

3λ∗ and x∗ are uniquely defined because X is a convex set and because under A1, B(λ)

is also a convex set (also recall that the distributions fk are single peaked).
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5.1.2 Comparative Statics

We now wish to use Proposition 4 to illustrate the effect of size and homo-

geneity. Throughout the rest of this Section, we set:

g(x) = (x1)
a + (x2)

a − 1, with a > 1

We also assume that densities take the form:

fk(ε) =
1

bk
(1− | ε |

bk
), with bk > 0,

where bk is thus a measure of the dispersion of the preferences within sub-

group k.

Set yk = (1− λ∗)x∗i . With this change of variable, and using Equations

(5) and (7), we are looking for (y1, y2) such that

(
y1
y2
)a−1 =

α1
α2

f1(−y1)
f2(−y2)

(8)

α1F1(−y1) + α2F2(−y2) = 1− β (9)

We can then derive λ∗ from

1− λ∗ = ((y1)
a + (y2)

a)1/a

Assume b1 > b2. If α1 < α2
b1
b2
, then we can define y∗ > 0 such that

α1f1(−y∗) = α2f2(−y∗),

We then let

β∗ =
X
k

αk(1− Fk(−y∗)).

Otherwise, note that we have α1f1(−y) > α2f2(−y) for all y ∈ (−b2, b2).
We have the following Proposition:

Proposition 5: Assume b1 > b2. If α1 >
b1
b2
α2, then x∗1 > x∗2.

If α1 <
b1
b2
α2, then
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(i) at majority rule β∗, x∗1 = x∗2 = x∗0, and λ∗ = λ0, where

x∗0 ≡ (1/2)1/a and λ0 ≡ 1− y∗/x∗0.

(ii) for any more stringent majority rule β > β∗, we have:

x∗1 > x∗0 > x∗2 and λ∗ < λ0,

(iii) for any less stringent majority rule β < β∗, we have

x∗1 < x∗0 < x∗2 and λ∗ > λ0

Proof: Consider β > β∗, and assume by contradiction that y1 < y2.

Then (8) implies α1f1(−y1) < α2f2(−y2). Since 0 < y1 < y2, we have

α1f1(−y2) < α1f1(−y1), hence α1f1(−y2) < α2f2(−y2), which requires y2 <
y∗, hence

y1 < y2 < y∗.

(9) then implies:

1− β = α1F1(−y1) + α2F2(−y2) >
X
k

αkFk(−y∗) = 1− β∗.

Contradiction. So y1 > y2, hence by a similar argument, y1 > y2 > y∗; Also

note that we must thus have x∗1 > x∗2, hence x∗1 > (1/2)1/a > x∗2, hence

y∗ = (1 − λ∗0)(1/2)
1/a < y2 = (1− λ∗)x∗2 < (1 − λ∗)(1/2)1/a, which implies

that λ∗ < λ∗0. This proves claim (ii). Claim (iii) is proved similarly.

To prove claim (i), observe that y1 < y2 implies α1f1(−y2) < α2f2(−y2)
which cannot happen when α1 >

b1
b2
α2. Q.E.D.

The following figures plot the ratio v1/v2 and λ∗ as a function of the

majority rule β for specific values of the parameters αk and bk.

5.2 Multiple-class voting

We now examine the effect of size and heterogeneity in the case of multiple-

class voting. We have seen that under an appropriate choice of the vector
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(βk)k efficiency could be restored. We now fix βk = 1/2 for all k, and examine

the effect of size and heterogeneity across subgroups, assuming that

γk < 1/2 for all k.

This assumption ensures that support for a proposal is not easy to obtain,

and that some delay in reaching agreement will obtain. We are interested

in which subgroups obtain more favorable treatment.

Our main finding is that the outcome is independent of size and that it

is more favorable to subgroups for which support is more difficult to obtain.

Formally we define µk as the threshold for which

Pr(εki > −µk) = βk(= 1/2).

Note that since γk < 1/2, µk must be positive: −µk corresponds to the
idiosyncratic element of the median group member, that is, it characterizes

the extent to which the distribution over idiosyncratic elements εki is skewed

to the left.

Next denote by x∗ = (x∗k)k the point of the Pareto frontier of X charac-

terized by:4

x∗k
x∗1
=

µk

µ1
.

We have the following Proposition:

Proposition 6. There exists δ̄ such that for all δ > δ̄, and for

any β−majority rule, limit equilibrium values remain close to

the point v∗ = λ∗x∗ with λ∗ = 1− µk

x∗k
.

This Proposition illustrates that high values of µk induce large delays in

reaching agreement, but it also illustrates that compared to other subgroups,

4Note that our assumption that X contains (η̄, ..., η̄) implies that the ratios ηk/x∗k are

below 1.
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the outcome is more favorable to those having a high parameter µk, that is,

those groups for which the median member is most hurt.

Proof: Consider a candidate equilibrium value v. Consider any draw x.

Following the proof of Proposition 2, subgroup k supports proposal x with

probability arbitrarily close to 1 (as n gets large) when 1−Fk(δvk−xk) > βk

or equivalently when

xk > δvk + µk

The agreement set thus coincides with:

Av = {x ∈ X, xk > δvk + µk for k = 1, 2}

Let λv =
PrAv

1−δ+δPrAv . In equilibrium, it should be that

vk = λvE[xk | x ∈ Av]

Since µk > 0 for all k, then, for patient individuals, we must have λv < 1

and PrAv must be comparable to 1 − δ, hence, for patient individuals, we

must have E[xk | x ∈ Av] ' vk +µk, with the vector (vk +µk)k lying on the

Pareto frontier of X. This further implies that

vk
v1
=

vk + µk
v1 + µ1

hence
vk
v1
=

µk
µ1
=

vk + µk
v1 + µ1

,

which in turn implies that (vk + µk)k = (x
∗
k)k. Q.E.D.

5.3 When a constitutional agreement is lacking

In the previous section the rule was fixed (βk = 1/2) This subsection can

be viewed as a dual version of the previous one: we fix γk, and give each

subgroup the option to independently decide the majority requirement βk

to be applied to their own subgroup.

15



Our main finding is that inefficiencies arise again, as each subgroup is

tempted to increase its majority requirement βk. Such an increase tilts

the outcome in a way that is favorable to members of subgroup k, but

it generates efficiency losses in terms of delays. This section explains the

trade-off between these two motives, and the equilibrium choice (β∗k)k.

Formally, we assume that in a first stage, subgroups simultaneously

choose the majority requirement βk that applies within their own group,

and that in a second stage, our previous collective search game is played.

As in the previous subsection, it will be convenient to let

µk ≡ −F−1k (1− βk).

Also, for simplicity, we make the following assumption:

A2: X is the simplex: X = {x = (x1, ..., xK),
P

k∈K xk ≤
1, xk ≥ 0 for all k} .

We have the following Proposition:

Proposition 7: The two stage game has a unique pure strategy equilib-

rium. Each subgroup chooses βk so that µk = µ∗ = K−1
K2 , and the resulting

equilibrium payoffs are vk =
1
K − γ∗ = 1

K2 .

Intuitively, each subgroup has an incentive to increase its majority re-

quirement because a higher majority requirement tilts the outcome in its

favor. But a higher majority requirement also induces further inefficiencies

(in the form of delays), hence there is a limit to that increase. Nevertheless,

substantial inefficiencies result.

Proof: We first derive the continuation equilibrium outcome in the sub-

game where each subgroup k has chosen βk respectively. This is done exactly

as in Proposition 6. Calling x∗ the point of the Pareto frontier for which
x∗k
x∗1
= µk

µ1
, that is: x∗k = µk/

P
j µj , the equilibrium continuation value v∗

satisfies:

v∗ = λx∗ with λ = 1− µk

x∗k
.
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implying that:

v1 = (1−
X
k

µk)
µ1P
k µk

=
µ1P
k µk

− µ1

Choosing βk is equivalent to choosing µk and the derivation of equilibrium

choices of µk follows from standard computations. Q.E.D

Note that the equilibrium outcome does not depend on the distributions

Fk. It depends however on the shape of X. Assuming that the frontier of

X can be parameterized by ga(x) = 0 with

ga(x) =
X
k

(xk)
a −K1−a

for some a > 1, the following figure plots the sum of expected payoffs as a

function of a. As a increases, transferability is reduced and the efficiency

loss is reduced.
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